2',5'-Dihydroxyflavone and its 5'-Acetate — Novel Compounds from the Farinose Exudate of Primula

Eckhard Wollenweber and Karin Mann

Institut für Botanik der Technischen Hochschule Darmstadt, Schnittspahnstraße 3, D-6100 Darmstadt, Bundesrepublik Deutschland

Munekazu Iinuma, Toshiyuki Tanaka, and Mizuo Mizuno

Gifu Pharmaceutical University, Gifu, Japan

Z. Naturforsch. **43c**, 305-307 (1988); received November 27, 1987

Primulaceae, Farinose Exudate, 2',5'-Dihydroxyflavone, 2'-Hydroxy-5'-acetoxyflavone, Synthesis

2',5'-Dihydroxyflavone and its 5'-acetate were isolated from the farinose exudate of *Primula japonica* and *P. pulverulenta*. Their structures were elucidated by spectroscopic methods and confirmed by synthesis. Both flavones are novel natural products.

Introduction

In botany textbooks the farinose coating on leaves and inflorescences of many Primula species is still often said to "consist of flavone". We have shown earlier [1, 2] that it is in fact formed by varying amounts of unsubstituted flavone (at least 50%), 5-hydroxy flavone and 2'-hydroxy flavone, accompanied in many species by 5,8-dihydroxy flavone (primetin) and 5,2'-dihydroxyflavone. Further components with scattered distribution are 5,8,2'-trihydroxy flavone and 3',4'-dihydroxy flavone, the latter always occurring only as a trace constituent [3]. Recently we identified 2'-methoxyflavone, 5-hydroxy-2'-methoxyflavone and 2',4'-dihydroxy chalcone as new constituents of Primula exudate and mentioned the existence of further compounds [4]. Now we wish to report on the identification of a novel flavone and its natural acetate from this material as well as on the synthesis of this flavone.

Materials and Methods

Isolation of products 1 and 2

Material of *Primula japonica* and *P. pulverulenta* was obtained from the Botanischer Garten der TH Darmstadt. The farinose exudate from leaves and

Reprint requests to E. Wollenweber.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341-0382/88/0003-0305 \$ 01.30/0

inflorescences was recovered and prepared as described previously [4]. From the farina of P. pulverulenta we isolated compound 1 which occurs on polyamide TLC (toluene/dioxane/MeOH 80:10:10) as a spot with light turquoise fluorescence (UV₃₆₆). This is similar to 2'-hydroxy flavone but with a slightly higher $R_{\rm f}$ and hence is partly concealed by the latter. Separation is improved on silica (toluene/dioxane/glac. acetic acid 90/25/4), where the unknown product **1** exhibits lower R_f than 2'-hydroxy flavone. Preparative TLC on silica was used, therefore, to isolate this product. A more polar component 2 which showed a spot of similar colour to 1 was also isolated by preparative TLC on silica from relevant fractions of P. pulverulenta as well as from P. japonica.

Compound **1** crystallized from ethyl acetate as colourless needles, m.p. 221-222 °C. It exhibits the following spectral properties: UV $\lambda_{\rm max}^{\rm MeOH}$ (nm) 332, 308, 286, 241; unchanged with AlCl₃; + NaOH 428, 303, MS m/z (rel.int.) 298 (14, M⁺), 254 (100, MOAc), 237 (8), 226 (9), 197 (4), 134 (10), 121 (42), 105 (5), 42 (34). For ¹H NMR data see Table I.

Compound **2** could not be crystallized, due to lack of material. UV $\lambda_{\text{max}}^{\text{MeOH}}$ (nm) 360, 296, 247. MS m/z (rel.int.) 254 (88, M⁺), 238 (10), 237 (13), 226 (13), 197 (9), 134 (32), 121 (100), 105 (15).

Compound 1 was hydrolyzed by adding a few drops of conc. HCl to a solution of 1 in boiling glac. acetic acid. Methylation of compound 2 was done with dimethyl sulphate to yield 5.

Synthesis of 1 and its diacetate

2-Hydroxyacetophenone (700 mg, 5 mmol) was condensed with 2,5-diisopropyloxybenzaldehyde (1.1 g, 5 mmol) in the presence of KOH (3 g) to give 2'-hydroxy-2,5-diisopropyloxychalcone as yellow needles (1.4 g), m.p. 94–95 °C (MeOH). A dry dioxane solution containing the chalcone (1.0 g, 3 mmol) and 2,3-dichloro-5,6-dicyanobenzoquinone (1.36 g, 6 mmol) was heated under reflux for 9 h.

Table I. ¹H NMR spectra of compounds **1–5** (in CDCl₃, **2** in d₆-DMSO; in ppm/TMS; J in Hz. JEOL GX 270).

	1	2	3	4	5
H-3	7.30 s	7.17 s	7.13 s	6.72 s	7.26 s
H-5	8.30 dd	8.40 dd	8.25 br d	8.23 br d	8.24 dd
	(1.2, 7.7)	(1.5, 7.69)	(7.55)	(8.11)	(1.5, 8.11)
H-6	7.47 br t	7.49 t	7.44 t	7.45 t	7.42 t
	(7.7)	(7.69)	(7.55)	(8.11)	(8.11)
H-7	7.77 dt	7.83 dt	7.67 br t	7.63 br t	7.68 dt
	(7.7)	(1.5, 7.69)	(7.55)	(8.11)	(1.5, 8.11)
H-8	7.65 br d	7.71 d	7.52 d	7.52 d	7.53 d
	(7.7)	(7.69)	(7.55)	(8.11)	(8.11)
H-3'	7.28 d	6.89 d		7.23 d	6.98 d
	(8.9) m	(8.60)		(8.97)	(8.98)
	, ,		6.97-7.02 m		
H-4'	7.16 d (2.3, 8.9)	6.85 d (2.5, 8.60)		7.29 dd (2.57, 8.97)	7.04 dd 2.5, 8.89
H-6'	7.74 d	7.32 d	7.44 d	7.57 d	7.46 d
	(2.3)	(2.5)	(1.5)	(8.97)	(2.5)
	8.07 (OH) 2.35 (Ac)	9.13, 10.02 (OH)	1.36, 1.38 (-CH(CH ₃) ₂) 4.55 (CH)	2.31, 2.35 (Ac)	3.86, 3.98 (OMe)

When cool, the reaction mixture was subjected to CC and eluted with CHCl₃. From the early fractions, 2',5'-diisopropyloxyflavone (3) was obtained as a pale yellow oil (570 mg). - BCl₃ (1 ml) was added to a CH₂Cl₂ solution (20 ml) of the flavone (3, 520 mg) at -60 °C. The solution was left at room temp. for 40 min, then poured into water. By the normal preparative procedure 2',5'-dihydroxyflavone (2) was obtained as pale yellow needles (270 mg), m.p. 173-175 °C (AcOEt/C₆H₁₂). UV λ_{max}^{MeOH} (nm) 364, 295, 246; unchanged with AlCl₃; + NaOH 440, 303 \rightarrow dec. 2',5'-dihydroxyflavone (2, 100 mg) was acetylated by the acetic anhydride/pyridine method to give 2',5'-diacetoxyflavone (4) as a colourless powder, m.p. 92-94 °C (MeOH). For ¹H NMR data of the synthetic products see Table I.

Results and Discussion

In the mass spectrum of compound 1, the base peak occurred at M-42, indicating loss of an acetyl group. Acidic hydrolysis of 1 yielded a product that was shown to be identical with 2. The M^+ of 2 at m/z 254 pointed to a flavone with 2 OH-groups and the base peak at m/z 121 indicated an unsubstituted Aring. Hence both OH-groups should be placed on the B-ring, one of them being located at C-2' as indicated by the fluorescence on TLC. The position of

the second OH-group was deduced from comparisons of the NMR spectrum of hydrolyzed and methylated compound 1 (2/5) with the spectra of flavones with dioxygenated B-rings (2',3'/2',4'/2',5'/2',6'/ 3',4') [5], which showed that 1 and 2 must be 2',5'oxygenated. Synthesis of 2',5'-dihydroxyflavone 2 and its diacetate 4 proved that hydrolyzed 1 and natural 2 were indeed identical with 2',5'-dihydroxyflavone and the diacetate 4 was identical with acetylated 1. In the NMR spectrum of 2, the proton signal for H-3 appeared at 7.17 ppm, rather similar to the chemical shift of 1. In contrast, the chemical shift for the diacetate 4 was observed at a higher field (6.27 ppm). As already reported [6], introduction of an acetyl group at 2' causes an upper field shift of H-3 (0.4-0.7 ppm). This phenomenon proves that the acetyl group in 1 is located at C-5'. Hence the novel natural product 1 is definitively identical with 2'-hydroxy-5'-acetoxy flavone and 2 is 2',5'-dihydroxyflavone. Both compounds are novel natural products.

2',5'-Dihydroxyflavone (2) and its 5'-acetate (1) were also observed in the farinose exudate of several other *Primula* species such as *P. beesiana*, *P. bulleyana*, and *P. palinuri*. The monoacetate 1 seems normally to be produced in higher amounts than the parent compound 2. The identification of these flavones again emphasizes the particular capacity of

Primula glandular trichomes for biosynthesis of 5,7-deoxyflavones. This contrasts with the leaf and flower tissue which, according to Harborne's earlier extensive studies [7], accumulate glycosides based on

kaempferol and quercetin, and sometimes on herbacetin and quercetagetin, *i.e.* polyoxygenated flavonols with the usual 5,7-dioxy-substitution pattern.

- [1] E. Wollenweber and E. Schnepf, Z. Pflanzenphys. 62, 216 (1970).
- [2] E. Wollenweber, Biochem. Physiol. Pflanzen **166**, 419 (1974).
- [3] E. Wollenweber, in: Biology and Chemistry of Plant Trichomes, (E. Rodriguez, P. L. Healey, and I. Mehta, eds.), p. 53-69, Plenum Press, New York 1984.
- [4] E. Wollenweber and K. Mann, Biochem. Physiol. Pflanzen 181, 667 (1986).
- [5] M. Iinuma, S. Matsuura, and K. Kusuda, Chem. Pharm. Bull. 28, 708 (1980).
- [6] T. Tanaka, M. Iinuma, and M. Mizuno, Chem. Pharm. Bull. 34, 1667 (1986).
- [7] J. B. Harborne, Phytochemistry 7, 1215 (1968).